Kulağa basit geliyor ama gerçekten önemli bir yetenek Robot yalnızsa, bunu yapmak için yakınlarda dolaşan, hatta belki işin bir kısmını kendisi yapan bir kişi tarafından kolayca bozulabilecek bir strateji geliştirebilir Burası robotun, örneğin duyulabilir mesafede kalmak veya güvenlik nedenleriyle onları izlemek için etraftaki birini göze çarpmadan takip etmesi gerektiği yerdir; hastanedeki birine tuvalete kadar eşlik eden küçük bir robotu düşünün
genel-24
Yukarıdaki etkileyici kalem numarası yalnızca simüle edilmiştir, ancak EUREKA olmasaydı çok daha az insan zamanı ve uzmanlığı kullanılarak oluşturulmuştur Resim Kredisi: Meta
HSSD-200 olarak adlandırdıkları yeni bir 3 boyutlu iç mekan veri tabanı, ortamların aslına uygunluğunu da geliştiriyor
Habitat ve HomeRobot, GitHub sayfalarında MIT lisansı altında mevcuttur ve HSSD-200, ticari olmayan Creative Commons lisansı altındadır; o yüzden şehre gidin araştırmacılar Ancak yeni tekno-derecelilerimizi hoş karşılayacak biri varsa, daha pratik bir şeyler yapma yeteneğine sahip olmaları gerekecek – işte bu yüzden Meta ve Nvidia’nın sistemlerinde kalem hilelerinden işbirlikçi ev işlerine kadar her şeyi uygulayan sistemler var Ancak alanı paylaşan insan veya insan benzeri bir ajanla, görevi birkaç saniye içinde binlerce kez yapabilir ve onlarla veya onların etrafında çalışmayı öğrenebilir
Daha sonra, çok daha etkileşimli ve fiziksel olarak gerçekçi olan daha fazla ortamla birlikte 2
Geleceğin robot arkadaşları için yeni yaşam alanlarıMeta da somutlaştırılmış yapay zekanın peşinde ve bugün “Habitat” veri kümesinin yeni bir sürümüyle başlayarak birkaç ilerleme duyurdu Bu görevi tanımlamanın ve kodlamanın birçok yolu vardır, ancak bazıları diğerlerinden daha iyi olabilir Bunun ilk versiyonu 2019’da çıktı; temelde bir yapay zeka aracısının dolaşabileceği, neredeyse fotogerçekçi ve dikkatli bir şekilde açıklamalı 3 boyutlu ortamlardan oluşan bir dizi
Simülatörleri kullanmak yeni bir şey değil, ancak Nvidia, saf bir yapay zekayı bir görevi daha iyi gerçekleştirmeye yönlendiren takviyeli öğrenme kodunun yazılmasına yardımcı olmak için geniş bir dil modeli uygulayarak ek bir otomasyon katmanı ekledi Bu ortamları da doldurabilecek bir nesne kütüphanesi oluşturmaya başladılar; bu, birçok yapay zeka şirketinin yapmaya değer bulduğu bir şey
Meta ayrıca Boston Dynamics’in Spot ve Hello Robot’s Stretch için yeni bir robotik simülasyon yığını olan HomeRobot’tan da bahsetti 000 sahnedeki eğitimden daha iyi sonuçlar ürettiğini buldular Diyelim ki sehpadan mutfağa bulaşıkları taşıyarak ve başıboş kıyafetleri sepete koyarak oturma odasını temizleyecek bir robot yetiştirmek istiyorsunuz 0’ımız varBu da insan avatarlarının alanı VR aracılığıyla paylaşma olasılığını artırıyor
Gerçek dünyanın yalnızca karmaşık ve dağınık bir yer değil, aynı zamanda yavaş hareket eden bir yer olduğu ortaya çıktı Bu yüksek kaliteli sahnelerin yaklaşık yüz tanesinde yapılan eğitimin, düşük çözünürlüklü 10
Elbette yapay zeka soneler yazabilir ve Homer Simpson Nirvana’nın başarılı bir cover’ını yapabilir )
Diyelim ki bir temsilciye nesneleri alıp renklerine göre sıralamayı öğretmek istiyorsunuz Temsilciler bu tekniği kullanarak bir dizi başka sanal el becerisi ve hareket görevinde yüksek performans gösterdi Bu günler alır; ancak bunu gerçek dünyanın oldukça gerçekçi bir simülasyonunda yapmalarını sağlarsanız, sadece bir veya iki dakika içinde neredeyse aynı derecede iyi performans göstermeyi öğrenebilirler
İki teknoloji devi de tesadüfen bu sabah, yapay zeka modellerinin gerçek dünyayla etkileşime girmesini temel olarak simüle edilmiş bir modeli akıllıca kullanarak öğretmeye yönelik yeni araştırmalar yayınladı (Evet, bu bir uzatma
Artık Habitat 3 Tekrar ediyorum, simüle edilmiş ortamlar yeni değil ancak Meta, bu ortamlara ulaşılmasını ve üzerinde çalışılmasını biraz daha kolaylaştırmaya çalışıyordu Örneğin, bir robot daha az harekete mi öncelik vermeli yoksa tamamlanma süresini mi kısaltmalı? İnsanlar bunları kodlamada iyidir, ancak hangisinin en iyi olduğunu bulmak bazen deneme yanılma ile sonuçlanabilir Nvidia ekibinin bulduğu şey, kod eğitimi almış bir LLM’nin bu konuda şaşırtıcı derecede iyi olduğu ve ödül fonksiyonunun etkinliği konusunda çoğu zaman insanlardan daha iyi performans gösterdiğiydi
Bu eylemlerin gerçek dünyada işe yaramasını sağlamak elbette başka ve farklı bir zorluktur; aslında yapay zekayı “somutlaştırmak” Umudları, bazı temel navigasyon ve manipülasyon yazılımlarını standartlaştırarak, bu alandaki araştırmacıların yeniliğin beklediği daha üst düzey konulara odaklanmasına olanak sağlamasıdır Bu, insanların veya insanların ne yaptığı konusunda eğitimli ajanların robotla birlikte simülatöre girebileceği ve aynı anda onunla veya çevreyle etkileşime geçebileceği anlamına geliyor
Temizleme görevine “sosyal yeniden düzenleme”, bir diğer önemli göreve ise “sosyal gezinme” adını veriyorlar Robotları kontrol etmeyi öğrenen ve çekmeceyi açmak ve içine bir şey koymak gibi bir görevi yerine getiren ajanların, bu görevi yüzlerce veya binlerce kez tekrarlaması gerekebilir Ancak bu, Nvidia’nın üretken yapay zekayı benimsemesinin sadece laftan ibaret olmadığının açık bir işareti Hatta kendi kodunu yineler, ilerledikçe iyileşir ve farklı uygulamalara genelleştirilmesine yardımcı olur